

DNA Data Storage Annual Reality Check

LOC Conference March 13th, 2022

Daniel Chadash

DNA Data Storage Introduction & Status

Ţ

Introducing DNA's benefits / What DNA is and what it is not

- DNA is a new, complementary cold layer in the storage pyramid
- Initially, DNA can be the ideal medium for a 3rd copy (offline, secured, durable)
- It can last thousands of years with the right protection / packaging
- As natural DNA, It will always be readable
- No migration and minimal maintenance costs = attractive TCO
- DNA is a great way to diversify your media, mitigating the risk of a single tape supplier

- DNA is not a tape replacement (Sorry about that!)
- DNA is not going to store all the world's data in a shoebox
- DNA is not a hot/warm storage medium
- DNA is not cheap (yet)
- DNA is not coming to your nearby data center in the next 2 years

What we need to build

Codec	Synthesis	Storage / Retrieval	Sequencing	System
No vendor lock-in	Synthesize MB	No cooling requirements	Sequence MB	Integration with storage management software
Error detection / correction	Synthesize GB	Safe & durable medium	Sequence GB	Support object storage and S3 APIs
	Synthesize TB	Easily copied for geographical distribution	Sequence TB	Random Access
	TB < \$1000	Compact footprint	TB < \$1000	On-Premise deployment
	Throughput of TBs/day	No manual handling	Non-destructive sequencing	Automated storage system (e.g., Tape Library)
	Always accessible (Natural DNA)	Adjustable "Automation ready" storage container	TBs/day throughput	"Fixity checks"
	Enzymatic Synthesis			Data Center "friendly" deployment

What we have built

Codec	Synthesis	Storage / Retrieval	Sequencing	System
No vendor lock-in	Synthesize MB	No cooling requirements	Sequence MB	Integration with storage management software
Error detection / correction	Synthesize GB*	Safe & durable medium	Sequence GB	Support object storage and S3 APIs
	Synthesize TB	Easily copied for geographical distribution	Sequence TB	Random Access
	TB < \$1000	Compact footprint	TB < \$1000	On-Premise deployment
	Throughput of TBs/day	No manual handling	Non-destructive sequencing	Automated storage system (e.g., Tape Library)
	Always accessible (Natural DNA)	Adjustable "Automation ready" storage container	TBs/day throughput	"Fixity checks"
	Enzymatic Synthesis*			Data Center "friendly" deployment

* Proof of concept

Solving The Rest of The Puzzle

DNA Data Storage Technology Progress

Goal is to develop a chip that produces 1 TB of coded DNA

- DNA is synthesized on a chip
 - Use a 2D array of electrochemical reactors to synthesize strands of DNA
 - After synthesis, the DNA is washed into a tube, then amplified, purified, and packaged
- Chip capacity is limited by the array pitch and chip size
 - There is a scaling limit; each reactor needs to produce enough DNA to practically store
 - Given the scaling limit, 1 TB from a chip is the practical limit otherwise the chip becomes too large
- Twist's chip capacity roadmap
 - 62.5 GB → 250 GB → 1 TB
 - We are working on the 62.5 GB chip
- Synthesis cost drivers
 - At scale, the fixed cost is averaged over many units
 - Variable cost is driven by reagent prices and reaction volume high density chips yield lowest cost

Τ.

• DNA degrades by oxidation

- Hermetically packaging DNA leads to a long shelf life
- The package can be checked periodically for leaks no leaks, no degradation
- DNA is dense, but packaging needs to be practical
 - Industrial automation required for process steps
 - And tubes that can be laser welded shut
- Barcoded tubes can be packed in arrays
 - Arrays are configurable
 - Array sizes: 96 TB, 384 TB, or 1,536 TB per bio automation spec

7.5mm x 18mm

- When synthesis is solved, sequencing becomes the most pressing challenge
- Overall sequencing cost depends on reading frequency
- Genomic sequencers are a non-starter; orders of magnitude too expensive
- Multiple groups working on molecular electronics sequencing

- So far, the focus has been on the components as enablers
- We have phenomenal technologies, but not yet a product

- Operated by IT team / Offered as a service
- Integrated with storage management software
- Data in/out
- Data Center Ready Monitoring, Debugging, Alerts, etc.
- Implement common APIs and File Systems
- Fixity Check solution

Building the DNA Data Storage ecosystem

T

- Formed on October 12th, 2020 by Ilumina, Microsoft, Twist and Western Digital
- More than 50 member organizations (Including leading storage vendors: Seagate, WD, Kioxia, Dell, Quantum, Fujifilm, Fujitsu, Spectra Logic and Microsoft)
- Create and promote an interoperable storage ecosystem based on DNA as a data storage medium
 - Educate the DNA data storage market to create awareness and adoption
 - Identify use cases in various markets/industries for the use of DNA data storage
 - Develop an industry technology roadmap for DNA data storage
 - Foster standards or specifications as needed by ecosystem

Scope

AAGACACGATAGACGAGAATGGCACGGACTA TATAGCTACGACTAGATAATCTAGACGAGCAGAATCATAGATA G A A G A G A C G C G A T G A A G G G A T T A A T A G C A T C A T A G A T A A C T A G C A T A T A C G A T A A C G C T A C T A C G A T C G A C T A C T A T C A G T A G A C G A A A A A G C C C A A G A C G G A T T A C T A G C A T C A T C A T C A T A G C T A G A A G C C A G G A C A C T A T C A G C G C T T A C A G C A C T A T C A T C G G A G G G C C A T A G C A T C A T A T C G A G C G C G C G A T C A G C A G C T A T G C T A C T A C T A C T A T C C G A C G A T C A T C C G C T G A T C A G C A G T C T A C T A C T C A G A C A G A A T C A T G G A G A T C T A C A G C T A T T A T A T A T C C C C C A T A G A G C A A A A G A G A G A C A